Hardware: common lidar architecture and
(especially, but not limited to) new transmitters
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JPL TMO (Table
Mountain
tropospheric

Ozone) DIAL

NASA/JPL

Table
Mountain, CA
(fixed)
4w:Nd:YAG
pumped gas
cell

(289, 299)

91,5,5

PC, A/D

0.1-23

TOPAZ (Tunable
Optical Profiler
for Aerosol and

oZone) lidar

NOAA/ESRL

Boulder, CO
(mobile)

4w:Nd:YLF
pumped
Ce:LiCAF
(tunable, typ.
287, 291, 294)

50

A/D, (PC soon)

RO,QET
(Rocket-city O3
Quality
Evaluation in
the
Troposphere)
lidar

UAH

Huntsville, AL
(fixed, mobile
soon)
4w:Nd:YAG
pumped gas cell
(283, 289, 299)

40, 10, 2.5

PC

0.1-12

GSFC TROPOZ
(TROPospheric
OZone) DIAL

NASA/GSFC

Greenbelt, MD
(mobile)

4w:Nd:YAG
pumped gas

cell
(289, 299)

41,2.5,2.5

PC, A/D

0.2 -12 (day)
0.2- 19 (night)

LMOL (Langley
Mobile Ozone
Lidar)

NASA/LaRC

Hampton, VA
(mobile)

4w:Nd:YLF
pumped
Ce:LiCAF
(tunable, typ.
285, 291 with
527 for aerosol)

40

A/D, PC

0.1-4



Discussion starters:

* Evolution of current systems as well as development of new systems. (Are
the current systems meeting all the appropriate needs?)

— Number and locations of additional systems (Is an ad hoc network sufficient or would
these ultimately become “commercial” units?)

— |Is a common lidar architecture reasonable or achievable?

« System goals/specifications (as informed by the items above)

— Summarize improvements that current TOLNET systems have found necessary (i.e what
were the limitations?)

— Accuracy and precision, temporal and spatial resolution, range coverage (e.g. low
altitude coverage and maximum altitude range)

— Compact, low cost, low maintenance, etc.
— Unattended operation 24/7
— Mobility

— What are the prospects of new transmitter technologies?



Examples

* ESRL addition of photon counting to extend maximum
range

* ESRL exploration of solid state Raman laser
Additional topics

* SBIR possibilities
e Other support for development
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