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 Brief description of Langley Mobile Ozone Lidar (LMOL)
& capabilities

* Hardware/software upgrades & calibration/validation

* Recent Air Quality Case studies:
e April 19, 2016 Exceedance
* May 24 & 26, 2016 Transport

e Possible future studies
e Summary & conclusions
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NASA Langley Mobile Ozone Lidar (LMOL)

Deployed for the first time in the NASA DISCOVER-AQ campaign (2014).
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Capabilities:

* Small, highly mobile trailer, can be towed with a pick-up truck to relocate

* Ozone profiles up to 6-7 km AGL for a 5 minute time average

* New software upgrade provides real-time curtain display for ozone and aerosol profiles

* Possible to run 24 hours, but currently limited by staff support, looking into unattended options in 2017

Science investigations addressed:

* Provide high spatio-temporal profiles of Planetary Boundary Layer (PBL) and Free Troposphere (FT) ozone and aerosols.
* Help improve air-quality forecast models.

* Improve understanding of ozone and aerosols aloft and its influence on surface ozone and PM values.
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LMOL example data comparison with P3B spirals during DISCOVER-AQ
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Recent LMOL hardware upgrades

* Recent LMOL laser pump LMOL increase in transmitted power
replacement funded by NASA — o
HQ/TOLNet: 3x increased .
transmitted Ia.se'r power .starting'in o Trfn%imwer . :. s
2016, dramatic increase in stability 8 Crnid o .

—— Green Linear fit ° @ 0,
. . . §' 0 9

* Receiver box re-alignment in May Z 150~ >3x UV o -6 O
2016, stray light & BP filter g power! .'3“‘*_;‘. 3
im proveme nts no. Old pump laser 5

> 100 UV avg= 48.9 mW e T— —4 —
~ Orosns 1.05 W UV avg = 174.8 mW ‘g

* Data system & detector upgrades - Green avg=5.2 W

expected in 2017 50 @588 | 4
“‘i Q'
* Near-range (0-600m AGL) absolute i E

stability to be improved in 2017 0 : . , l ] ] i —0

5/1/12015 9/1/2015 1/1/2016 5/1/2016

* Unattended operation in 20177 Date

Operational for 6 months at higher power, no sign of difficulties
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LaRC related laser development efforts for TOLNet

John Hair NASA LaRC
technical point of contact

SBIR Phase Il recently
awarded to Bridger
Photonics, Bozeman MT

Addresses the need for a
commercial source for
TOLNet ozone DIAL lidar
systems

Estimated transmitter
commercial cost: ~S200K

2-year maintenance-free
interval

NASA SBIR/STTR Technologies

$1.01-8695 - Compact, Rugged and Low-Cost Atmospheric Ozone DIAL Transmitter

J/BIR
JTIR

Pl: Jason Brasseur
Bridger Photonics, Inc. - Bozeman, MT

Identification and Significance of Innovation

Real-time and high-frequency measurements of atmospheric ozone are
becoming increasingly important to understand the impact of ozone towards
climate change, to monitor and understand depletion of the ozone layer, to
further understand its role in atmospheric chemistry, and to assess its impact on
human health and the produc‘civit{ of agricu ltural crops. Expansions of
tropospheric ozone measurement efforts, such as NASA’s TOLNet program, are
critical to improve our understanding these effects. In response to this need,
Bridger Photonics Inc proposes developing the most efficient, compact, rugged,
low-power consumption and cost-effective UV ozone differential absorption lidar
(DIAL) transmitter available. The proposed transmitter will enable widespread
deployment of ozone DIAL systems capable of continuous range-resolved
atmospheric ozone measurements from ground-based and airborne platforms to
advance NASA’s Earth science mission. To achieve this design goal, Bridger
will apply innovations proven out during its Phase | effort and developed
previously for its MIR series laser product.

Estimated TRL at beginning and end of contract: ( Begin: 4 End: 6 )

r Head
Electronics Box Laser Hos

Laser Head

Estimated Transmitter Cost {4 Parts)

Qry1 Qty 1o
One Ls o OPO option $190,000 §140,000
Two La: 0 OFOoplien 260,000 $200,000

Technical Objectives and Work Plan

The overall Phase Il goal for this effort is to design, construct, and test an
autonomous, production-grade prototype, two-wavelength ozone LIDAR
transmitter. The proposed transmitter will enable state-of-the-art continuous
ozone LIDAR measurements without the need for a skilled operator. It will also
provide a long maintenance-free interval (> 2 years), and will cost under $200k
per transmitter. In this Phase Il effort Bridger will pursue four main objectives:
1) refine its Phase | breadboard prototype to increase output pulse energy,
mode quality, and system atabilil?l, 2) design and construct a brasshoard
prototype transmitter for system testing and demonstration, 3) perform lifetime
and damage testing on critical system components to ensure long term
operability, and 4) perform environmental sensitivity and long-term performance
testing on the brassboard prototype. Successful completion of this Phase Il
program will allow Bridger to demonstrate a simultaneous DIAL, production
protot{pe transmitter with pulse energies >200 pJ in both DIAL wavelengths
capable of autonomous operation, without degradation, for 3 months.

NASA Applications

NASA's primary application for the proposed transmitter would be for
widespread deployment of ground-based and airborne sensors to map ozone
concentrations with high spatial and temporal resolution. This will allow NASA
to carry out its Earth Science missions with smaller, lower cost DIAL
transmitters enabling NASA programs to meet multiple mission needs and make
the best use of limited resources. Our system will be highly useful for both
integrated column and range-resolved measurements due to its shert pulse
durations and high energies.

Non-NASA Applications

Both NOAA and the EPA would be potential customers for the complete UV
transmitter. Our base pump laser can be frequency down-converted into the
SWIR spectral band for profiling other important greenhouse gases and
pollutants. Bridger envisions a variety of applications for the pump laser
including hard-target ranging, laser ablation, nonlinear spectroscopy, and as a
general purpose OPO pump.

Firm Contacts Jason Brasseur

Bridger Photonics, Inc.

2310 University Way, Building, 4-4
Bozeman, MT, 59715-6504
PHONE: (406) 585-2774

FAX: (406) 587-0808

NON-PROPRIETARY DATA




calibration/validation

Working closely with TOLNet team members for
routine cross-comparison with measurements &
algorithm improvements

* August 2016 field deployment planned in
California, multiple TOLNet lidar systems

Routine ozonesonde launches from LaRC (Travis
Knepp)

Cross-comparisons with LaRC HSRL-2 lidar (John Hair)
measurements (June 2016) and other opportunities
when they occur

Overpasses from other aircraft (ie. C130 ACT-America
mission overflight in May 2016)

Working with Danette Allen/Intelligent Flight Systems
at NASA LaRC for possible use of LaRC UAV platform
in 2017 for more effective near range (low altitude)
calibration/validation tests

NASA LaRC UAV platform identified to support ozonesonde sensor

package, flying in the LaRC “back-40"

Photo credit: NASA LaRC Autonomous Incubator

VA state
DEQ Air quality
trailer
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First test-case applied to LMOL data for “PBL”
height retrieval

LMOL PBL retrieval provided by Amy Jo
Scarino (SSAI/NASA LaRC) 20140811

* Feasibility test of processing LMOL
backscatter signal through Scarino’s 35
MLH algorithm (Scarino et al, 2014

Automated

ACP) 3 ; detection of mixed :
" layer height . —J°O's

* Uses a Haar wavelet covariance
transform with multiple dilations to
identify sharp gradients in aerosol
backscatter (Brooks, 2003, Davis et al.,
1997 & 2000)

Altitude (km)
g4N ‘wu/es - [osolay

* Daytime lidar MLH can be used as a
proxy for PBL under certain conditions
(ie. well-mixed, daytime boundary

20 21 22 23 24 25 26
layer) Time (UTC)

* Tested on one day from DAQ Colorado . - . .
and did a good job on aerosol, PBL height critical to constrain atmospheric

possible further development and models to better represent boundary layer
validation in 2017 concentrations of ozone
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April 19: First Hompton Roads Exceedance for 2016

VA DEQ Surface Ozone
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Altitude (from Ground Level) [m]

......

LMOL measurement on April 19, 2016
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LMOL reveals a strong aloft ozone from 0.6 to 2 km in
altitude, that extends down towards the surface

around mid-day

03 mixing ratio [ppbv]

NOAA HYSPLIT MODEL
Backward trajectories ending at 1700 UTC 19 Apr 16
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Back-trajectories indicate surface air recirculating in
region, upper levels in the O3 layer formed from a
NW airmass subsiding in the boundary layer



Shenandoah
Nat’/l Park

250 km NW of NASA LaRC
Second largest fire in history of
Shenandoah National Park

April 19

o
NVA.~  DCX
3

Wk / Detail

®
VA. Richmond_ -
R

Rocky Mount fire

. 5MILES ')

The Rocky Mount fire burns in Shenandoah National Park, seen from McGaheysville, Va., on the night of April 19. (Larry W.
Brown)
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NRL-NAAPS Aerosol Model for April 19, 2016

Columnar AOD (Blue= smoke) Surface Smoke Concentration
N2APS Total Cptical Depth for 12:007 18 Apr 2016 Smoke Surfoce Concentratian {ug/m#+3) for 2016041512
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May 24 & 26, 2016 Hampton Roads

VA DEQ surface Ozone

NOAA HMS smoke product Hampton, VA
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May 24 & 26: Aloft ozone layers appear to be from different sources
May 26 mixed into the boundary layer, but May 24 did not
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Future studies?

* LMOL can be paired with other TOLNet systems to help characterize ozone transition
zones in a variety of situations

* Rural v. Urban, Water v. Land

* Ryan Stauffer et al., J. Atmos. Chem (2015): Over-water ozone profiling

“The observation of land/water horizontal and - p o
vertical gradients of O3 over the Chesapeake Bay on sCape Charles
four separate days during DISCOVER-AQ 2011 '
point to a need for more consistent monitoring of air o
quality over the Chesapeake Bay waters, allowing Chesapeake Bay
more statistically stringent analyses to determine if :
the existence of higher O3 mixing ratios over the
Chesapeake is commonplace during the summer

months.” NASA LaRC

Ngwgf)rt New S ‘ Bay bridge
Measurement site?
[ )

* LMOL is small enough to go onto a
small ship/barge

* Chesapeake Bay Bridge/Tunnel is close
to LaRC, and could be a possible site for R .
over-water measurements g 4 5 S n  Googleearts

Tour Guide g S 3 73% N 76°12'01.78" W. 34ift  eye alt 29.70 mi
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Summary

Case studies presented illustrate the complex nature of ozone vertical structure &
temporal dynamics

LMOL/TOLNet lidars are able to more fully characterize these complex events, i.e. when
aloft ozone may be mixing down into the boundary layer and compromising surface air
quality

Assessment of local v. transport generated ozone

Combined with back-trajectory and model information to help identify contributing
sources (ie. wildfires, urban, etc.) and improve

With multiple TOLNet lidars, possible to study ozone transition profiles (ie. water v. land,
urban v. rural, etc.)
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Call for Papers

American Meteorological Society
97th ANNUAL MEETING |

Eighth Symposium on
Lidar Atmospheric Applications

in

This year’'s theme is

Please consider submitting your work! Go to the
link annual.ametsoc.org. select call for papers
and scroll to “Eighth Symposium on Lidar

Atmospheric Applications” for more information.

Abstracts are due by 1 August 2016.

Questions? Please contact the program
chairperson(s). Sara Tucker (email:
sara.tucker4ea@gmail.com) and Tim Berkoff
(email: timothy.a.berkoff@nasa.gov)

Papers for this conference are solicited on:

Lidar observations as model assimila-
tion inputs and verification data-sets
Lidar applications to air quality and
climate studies

Lidar networks

Making lidar data accessible to decision
makers and the public

New lidar technologies for atmospheric
applications: from instrumentation to
data distribution

Lidar applications to the energy sector
Space-based lidar observations

The CALIPSO Mission and its impact on
AMS community interests.

Polar lidar observations
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Example “PBL” height determination from lidar data

From Compton et al., J. Atmos. Oceanic Technol., 30, 1566—1575
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Recovery of near-surface signal with wide field-of-view (WFOV)

receiver
Extra receiver
on top of telescope

PorterV|IIe CA MPL WFOV Data

1.4 -

Altitude [km]

| ‘; u ..Mc\

= San Joaquin Valley has extremely low PBL, so
low that standard MPL channel would not
ordinarily capture aerosol dynamic

Altitude [km]

= WFQOV implemented at some DAQ sites in
California, Houston, & Denver to enable on-site
cals and better retrievals of near-field ( < 1 km)
aerosols




