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Motivation

Geostationary satellite instruments allow for tropospheric air quality measurements
 GEO-CAPE
* TEMPO

Satellite measurements must be related to surface conditions

e How do column measurements relate to the near surface?

* What are the affects of meteorological conditions on retrievals?
e What spatial variability is there?

DISCOVER-AQ = Deriving Information on Surface Conditions from COlumn and
VERtically Resolved Observations Relevant to Air Quality
e Multi-year, multi-location campaign
e Particulate and gas-phase measurements
e High-altitude satellite instrument simulators
e Aircraft profiling
e Ground sites




Sampling Strategy

Washington DC

14 flight days in 29 days
* UC-12 performed 3-4 circuits per flight over the

region at high altitude
* P3B performed three circuits per flight

e profiles over six instrumented ground sites

e Total of 253 profiles and 41 circuits
e Additional low level legs over freeways and
the Chesapeake Bay

e HSRL; vertical
distribution of
aerosol

e ACAM

P3-B

e LARGE; in situ
aerosol optical
and microphysical
measurements

Ground Sites

* 6 supersites;
spiral locations

e 7 additional sites

b
-

UMD Cessna 402B
L. Brent Poster
(GC21B-0968) 3




Sampling Strategy

Remote Measurements

e Primary retrieval is aerosol extinction

e Decreased sensitivity near clouds and
the ground

* Measurements are at ambient RH

In Situ Airborne Measurements

e Can measure a wider range of properties

(size, composition)

* |nlet effects — aerosol loss & reduced RH

e Can modify the RH and correct to
ambient conditions
e Cannot sample the lowest 500 ft

Ground Measurements

e Spatially limited

e Most measurements (PM, ) are at dry
conditions

UC-12

e HSRL; vertical
distribution of
aerosol

e ACAM

P3-B

e LARGE; in situ
aerosol optical
and microphysical
measurements

Ground Sites

* 6 supersites;
spiral locations

M o 7 additional sites




LARGE - In Situ Aerosol Measurements

In Situ Measurements

* Aerosol concentration

e Aerosol size: 10 nm — 3um

e Scattering (dried and at 80% RH) — corrected to ambient RH

e Absorption

e Composition - black carbon, inorganic compounds & water-soluble organics (WSOC)
* missing mass = insoluble organics (~¥30% of mass)

RH measurements made by a diode laser hygrometer and frost point hygrometer
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Distinct difference in composition with aerosol
loading. High loading days had:

e Greater abundance of ammonium sulfate
relative to organics

e Larger aerosols

e Higher single scattering albedo

e Consistent with aged aerosol

* Back trajectories corresponding to transport
from the Midwest
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Distinct difference in composition with aerosol
loading. High loading days had:

e Greater abundance of ammonium sulfate
relative to organics

e Larger aerosols

* Higher single scattering albedo

e Consistent with aged aerosol

* Back trajectories corresponding to transport
from the Midwest
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Scattering Correction

Ziemba et al., accepted, GRL
RH (%)

As RH increases, scattering increases due to water uptake RH(%) .,
L L | L |

== HSRL

In situ aerosol scattering is corrected by measuring the | == insitudry |
o == |n-situ ambient

scattering at two RHs

100-RH g,
yin|——7——
100—RH g1

®* Ogmb = Odry "€
e Gasso et al, Tellus B 2000; Quinn et al, GRL 2005;

Massoli et al, JGR, 2008

* f(RH) = 2%

040%

Altitude (km)

Scattering




Aerosol Hygroscopicity

Lowest 1 km Data f(RH)
Gamma (y) is dependent on composition 1.0 - 40
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Satellite retrievals are dependent on aerosol loading, composition and ambient RH
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Variability Analysis: What Factors Have the Greatest Effect

on Ambient Aerosol Scattering?

e Variability in ambient
scattering for each circuit
* Average variability of 22%

=Google

What factors have the greatest effect on ambient aerosol scattering?

(100_RHdry)

VGAN T T

* Oamb = Odry" e\

)

Satellite Aeroso
Meas. Loading

| Composition Ambient
Conditions
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Ambient Aerosol Scattering?

gamma

Scat. - Amb. & Dry

(%) HY

Average Std. Dev. Rel. Std. Dev.
Gamma 0.408 0.07 2%
RH 56 8 14%
Dry Scat. 150 13 9%
Amb. Scat. 195 28 14%
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Measure variability due to:

on Ambient Aerosol Scattering?

1) Aerosol Loading
- Hold gamma & RH constant
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Variability in ambient scattering (relative standard deviation, rsd):

9%
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Measure variability due to:

on Ambient Aerosol Scattering?

1) Aerosol Loading
- Hold gamma & RH constant
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2) Relative Humidity
- Hold gamma & dry scattering
constant
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Variability Analysis: What Factors Have the Greatest Effect

Measure variability due to:

1) Aerosol Loading
- Hold gamma & RH constant

0.5
0.3

gamma

>

o 40

< 250

Ko}

£ 200 \/\/

< 150 —_~ —

g 00—

N 1 2 3 4 5 6
Site
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2) Relative Humidity
- Hold gamma & dry scattering
constant
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3) Composition
- Hold RH & dry scattering
constant
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Variability Analysis: What Factors Have the Greatest Effect

Measure variability due to:

1) Aerosol Loading
- Hold gamma & RH constant
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3) Composition
- Hold RH & dry scattering
constant
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9%

8%

Relative Importance = rsd,,, x 100 / (rsdy,, + rsdgy, + rsd,)

51%

46%

>

[a) 40

& 250

o]

2 200

< 150

g W0 g7

n 1 2 3 4 5 6
Site
0.4%
3%

15




on Ambient Aerosol Scattering?

RF14 & Circuit 2
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Variability Analysis: What Factors Have the Greatest Effect

on Ambient Aerosol Scattering?

72% of the variability in aerosol scattering is due to variation in aerosol loading.

Additional 20% from variation in RH amongst the sites.
 Dependent on the RH due to non-linearity of aerosol hygroscopicity
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Aerosol composition is a minor contributor to variation in ambient scattering/AOD
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Ground and In Situ Aerosol Mass Comparison

PM2.5 measurements at 3 sites
* Measured by Beta-Attenuation Mass Monitor

Estimating mass from size distribution gives good agreement with the ground sites
e Particle density of 1.33 g/cm?3

e Beltsville
a  Fairhill
= Edgewood

B:,=1.42g/cm?®; R>=0.93
F:,=1.25g/cm?; R2=0.89
E:»=1.31g/cm?®; R2=0.9 |
Zb 36 46 50

Volume (P3B, .cm*/m=)
Suzanne Crumeyrolle
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Conclusions

Conclusions:
e Measurements in Baltimore during July 2011 sampled two distinct aerosol types:
e Low loading days with 60% organic mass and smaller aerosols
e High loading days with 60% ammonium sulfate and larger aerosols
e Aerosol hygroscopicity (y) was dependent on the organic fraction of the aerosol
e Variability in RH amongst the sites accounts for 20% of the apparent variability in
aerosol scattering
* |nsitu airborne measurements agreed well with ground-based measurements
(density of 1.33)

1

Future Campaigns:

e January/February 2013 — Central Valley, CA

e September 2013 — Houston, TX

e Summer 2014 — location to be determined

Thanks:

* NASA Earth Venture program through the
Earth System Science Pathfinder Program
Office

e Entire DISCOVER-AQ Team




Aerosol Hygroscopicity

1.0
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Remote and In Situ Scattering Comparison

Comparing LIDAR and in situ measurements

— measures scattering at ambient RH

* In Situ — higher than ambient cabin temperature
results in a reduced RH
Good Correlation between HSRL and corrected in situ

* HSRL

scattering
Dry scattering can also be compared to the aerosol size
distribution data

* refractive index of 1.53(why) used
Accepted from publication in GRL (Ziemba et al.)
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Mass Absorption Enhancement

Black carbon mass is related to absorption via it’s mass absorption efficiency (MAE)
with units of m?/g.
e Bare carbon =7.5%1.2 (Bond, AS&T ‘06)
e Soot coating increases absorption by acting as a ‘lens’ for the incoming radiation
(MAEcoated T IVIAEbare u abscoating)
Measured MAEs are considerably higher than MAE,_ .
e Similar range as measured in other urban cities (Mexico City and Toronto)
* MAE increased with the WSOC fraction and absorption angstrom exponent (AE_, )
e AE_, . uses solely optical measurements
* Deriving MAE from AE,,, allows for a better understanding of aerosol
absorption & composition based on solely-optical methods (remote sensors)
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Diurnal Trends

) Sulfate ., Organic Matter
g g
Aerosol mass changes = M 512
* Increase in ammonium and T o o ]\l\l'\'l
sulfate due to increased z g
o = 08—
photochemistry 3 05 :
 Decrease in organic and nitrate LS S R, B SR A
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mass Time (local) Time (local)
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