Formaldehyde - NASA Goddard ISAF vs CU-INSTAAR CAMS

10s Merge with 70\% Data

$$
\begin{array}{lll}
\text { All Data Points } & \text { Data Points > DL } & \text { Data Points > DL } \\
(33677 \mathrm{pts}) & (32662 \mathrm{pts}) & \text { Outliers Removed } \\
y=a+b x & y=a+b x & (32661 p t s) \\
a=70.0 \pm 6.3 & a=67.3 \pm 6.5 & y=a+b x \\
b=1.100 \pm 0.002 & b=1.100 \pm 0.002 & a=86.8 \pm 6.2 \\
R^{2}=0.906 & R^{2}=0.906 & b=1.085 \pm 0.002 \\
& & R^{2}=0.911
\end{array}
$$

Data Points > DL Data Points > DL (39636 pts)
$y=a+b x$
$a=124.5 \pm 6.9$
$b=1.057 \pm 0.002$
$R^{2}=0.863$
R

Outliers Removed
(39627 pts)

$$
y=a+b x
$$

$$
a=-67.2 \pm 5.7
$$

$b=1.101 \pm 0.002$
$R^{2}=0.904$

Difference dependence on $\mathrm{CH}_{2} \mathrm{O}$ value

Uncertainty envelopes based on 10s combined data uncertainty

(CU-INSTAAR CAMS calculated from data file, NASA Goddard ISAF $= \pm(10 \mathrm{pptv}+(10 \mathrm{pptv}+10 \%))$

(All Data Points, © Data Points < DL)

Frequency distribution

10s Archive Merge

10s Merge 70\% Data

Time Shift Analysis - 09/06/13

- Shifting CAMS data -2 seconds yields better agreement for 2 out of 5 points.

Time Shift Analysis - 09/09/13

- Shifting CAMS data -2 seconds does not significantly improve agreement.

Data:

- 10 second merge: SEAC4RS-mrg10-dc8_merge_20130806_R5_thru20130923.ict
- 1 second CAMS: SEAC4RS-CH2O_DC8_\#\#\#\#\#\#\#\#_RO.ict (\#\#\#\#\#\#\#\# = daily files from 20130806-20130923).
- 1 second ISAF: SEAC4RS-ISAF-H2CO_DC8_\#\#\#\#\#\#\#\#_R1.ict (\#\#\#\#\#\#\#\# = daily files from 20130806-20130923).

Correlation:

- 10s merge with 70% data are calculated using 1 s PI data files. Each 10 s interval must contain at least 70% of data for analysis.
- 10s archive merge outliers removed iteratively when Cook's Distance > 1 (https://en.wikipedia.org/wiki/Cook\'s_distance).
- Outlier removed from 70\% data 10s merge based on largest Cook's Distance.
- Fit lines are derived from orthogonal distance regressions.
- $\quad R^{2}$ values are calculated independently, not from orthogonal distance regression.

Uncertainty propagation (Uncertainties provided by PIs).

- CAMS 1s uncertainty: reported in data file; 10s uncertainty: calculated from 1s LOD quadrature average and SMU 10s average.
- ISAF 1s uncertainty: $\pm[30$ pptv + (10 pptv $+10 \%)] ; 10$ s uncertainty: $\pm[9.5 \mathrm{pptv}+(10 \mathrm{pptv}+10 \%)]$.

Difference dependence on $\mathrm{CH}_{2} \mathrm{O}$ value:

- Absolute difference calculated by CAMS - ISAF.
- Median, $25^{\text {th }}$, and $75^{\text {th }}$ percentiles based on 3000 data point bins after data is sorted by CAMS values.
- Uncertainty envelopes based on 10 s data uncertainty.

Frequency Distributions:

- NOAA CAMS data divided into 2 regions (< 500 ppt , >= 500 ppt).
- Frequency distribution bin width [< 500 ppt$]=15$; Frequency distribution bin width [>= 500 ppt$]=40$

Time Shift Impact: Bins containing at least 70\% of data

- Assume 10s merge will largely mitigate minor time shift impact.
- Case studies show 6 out of 8 data points across the 2 analyses do not significantly improve agreement when 1 s data is shifted, i.e., the 10 s merge lessens the time shift influence.

Summary: Archived 10s merge

Data Range	\# Points	\# Pts within Combined Unc.	\# Pts within 2*Combined Unc.
All	32634	$12490(30 \%)$	$27536(67 \%)$
$<500 \mathrm{ppt}$	19992	$4421(22 \%)$	$9619(48 \%)$
$>=500 \mathrm{ppt}$	21021	$1519(7 \%)$	$3101(15 \%)$

Summary: 10s merge with 70\% data

Data Range	\# Points	\# Pts within Combined Unc.	\# Pts within 2*Combined Unc.
All	33677	$5655(17 \%)$	$11205(33 \%)$
$<500 \mathrm{ppt}$	16396	$10710(65 \%)$	$13409(82 \%)$
$>=500 \mathrm{ppt}$	17281	$2520(15 \%)$	$4764(28 \%)$

