NDACC Mobile Aerosol and Temperature Lidar

Home Location: Goddard Space Flight Center
Greenbelt, MD 20771

Principal Investigator: John T. Sullivan
Code 614
NASA GSFC
Greenbelt, MD 20771
301-614-5549 Voice
301-614-5903 FAX
John.T.Sullivan@nasa.gov

Co-Investigators: Laurence Twigg
SSAI
301-614-5740 Voice
301-614-5903 FAX
Laurence.W.Twigg@nasa.gov

Grant Sumnicht
SSAI
301-614-6001 Voice
301-614-5903 FAX
Grant.K.Sumnicht@nasa.gov

Data Products
Temperature - vertical profile from ground to >70 km
Aerosol products - vertical profile from ground - ~30 km at 351 nm, 532 nm and 1064 nm
Water Vapor – vertical profile ground to ~15kms.

Instrument Description
The GSFC Aerosol and Temperature Lidar is a combined Rayleigh-Mie, Raman backscatter lidar.
Three wavelengths are transmitted, 1064, 532, and 355 nm (from a 50 Hz, 1.0 J Continuum Nd-YAG laser) and 355 nm. The beams from the YAG laser are transmitted approximately 1-m from the receiving telescopes, a 36" Newtonian and a smaller 4" telescope (used for near-field returns). Five wavelengths are currently collected: 1064, 532, 408, 355, and 387 nm. The 1064 is recorded using analog detection, while the other wavelengths are all photon counted. Currently plans are in place to replace the analog channel with a PMT and go to photon counting for the 1064 nm as well. Spectral separation is accomplished using beam splitters and interference filters. Because of signal dynamic range issues, the 355 and 532 returns are further split - 5% of each is split into a second detector to make measurements at lower stratospheric altitudes. In addition, part of the 532 nm beam is sent via optical fiber to a monochromator where special filters allow the application of the Rotational-Raman temperature
retrieval technique. The system is currently is a 16 channel lidar (8 channels that are 355 related and 8 channels 1064/532 related).

Temperature is extracted from the Raman and elastic returns from the YAG laser, and also from the 532 signals via Rotational Raman technique. A relative density profile is constructed using the 355 nm returns above ~28 km, and the 387 nm return below. Together with the 4” telescope signals this allows retrieval of temperature from the ground to >70 kms. In addition, the Rotational Raman signals are used to retrieve temperature to ~30 kms. These retrievals are much less sensitive to the presence of clouds/aerosol layers.

Aerosol information is extracted from all the transmitted wavelengths. The ratio of the elastic return at 355 (532) nm to the normalized Raman return at 382 (607) are used. This is, in essence, the lidar ratio; no assumption of the extinction to backscatter ratio is required as in single wavelength techniques.

Water vapor is retrieved using the ratio of the 387 and 408 signals. After study of the results of the WAVES and MOHAVE campaigns, changes were made to the system to eliminate as much as possible 355 nm fluorescence effects from various optical components that might contaminate the 408 signal return.

This lidar instrument has been deployed to Table Mountain, Mauna Loa, and Beltsville for NDACC intercomparison campaigns.

Selected Measurement Campaigns

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Location</th>
<th>Code Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>August, 1995 - February, 1996</td>
<td>MLO, Hawaii</td>
<td>NDSC/TOTE/VOTE/STRAT</td>
</tr>
<tr>
<td>February - March, 1997</td>
<td>Table Mountain, CA</td>
<td>STRAIT</td>
</tr>
<tr>
<td>Jun, 2005</td>
<td>Table Mountain, CA</td>
<td>3T-2005</td>
</tr>
<tr>
<td>Oct, 2006</td>
<td>Table Mountain, CA</td>
<td>MOHAVE-I</td>
</tr>
<tr>
<td>Jun-Aug, 2006</td>
<td>Beltsville, MD</td>
<td>WAVES-I</td>
</tr>
<tr>
<td>Jul-Aug, 2007</td>
<td>Beltsville, MD</td>
<td>WAVES-II</td>
</tr>
<tr>
<td>Oct, 2007</td>
<td>Table Mountain, CA</td>
<td>MOHAVE-II</td>
</tr>
<tr>
<td>Feb-Apr, 2008</td>
<td>Beltsville, MD</td>
<td>WAVES-III</td>
</tr>
<tr>
<td>Jan-Apr, 2009</td>
<td>Beltsville, MD</td>
<td>N-WAVES</td>
</tr>
<tr>
<td>Nov, 2011 – Feb. 2015</td>
<td>MLO, HI</td>
<td>NOJGIE</td>
</tr>
</tbody>
</table>

References - Technique


References - Campaigns and Results


