NDACC Mobile Stratospheric Ozone Lidar Trailer Experiment (STROZ-LITE)

Home Location: Goddard Space Flight Center
Greenbelt, MD 20771

Principal Investigator: John T. Sullivan
Code 614
NASA GSFC
Greenbelt, MD 20771
301-614-5549 Voice
301-614-5903 FAX
John.T.sullivan@nasa.gov

Co-Investigators: Laurence W. Twigg
SSAI
301-614-5740 Voice
301-614-5903 FAX
Laurence.w.twigg@nasa.gov

Grant K. Sumnicht
SSAI
301-614-6001 Voice
301-614-5903 FAX
Grant.k.sumnicht@nasa.gov

Data Products
Ozone - vertical profile from 10 km - ~48 km
Temperature - vertical profile from ground to >70 km
Aerosol lidar ratio - vertical profile from ground to ~ 30 km
Water Vapor – vertical profile from ground to ~15 kms

Instrument Description
The Goddard Stratospheric Ozone Lidar has been a participant in NDACC since its inception. This lidar instrument was developed with funding from the NASA Upper Atmosphere Program in 1985. The instrument is housed in a 40’ container allowing for transport around the world. The instrument is a combination Differential Absorption Lidar (DIAL), for the measurement of ozone; and a Raman and elastic backscatter lidar (for temperature, water vapor, and aerosol measurements).

The lidar instrument transmits two wavelengths, 308 nm from a XeCl excimer laser, and 355 nm from a YAG laser. The repetition rate for the excimer laser is 100 Hz, and 50Hz for the YAG. The lasers are triggered with a 5 msec offset so that there is no cross-talk between transmitted pulses. Backscattered radiation is collected with a 30” Dall-Kirkham telescope and a 4” “mini” telescope for near field channels. Spectral separation is accomplished using beam-splitters and interference filters. Five
return wavelengths are recorded: the two transmitted wavelengths the N 2 Raman scattered radiation from each of the transmitted beams - 332 nm and 382 nm, and the 408 nm water vapor channel. Each of the elastically scattered signals is further split to improve the dynamic range - roughly 2 - 5% is used to retrieve data in the lower stratosphere. The 11 signals are then amplified, discriminated and recorded using photon counting techniques.

The ozone measurement is a two-wavelength differential absorption measurement; 308 nm is absorbed by ozone, and 355 nm is not. The Raman scattered 332 nm radiation includes and absorption signal from ozone, while the 387 nm radiation does not. The atmospheric ozone number density can be retrieved from the difference in slope between the absorbed and not absorbed lidar returns.

Temperature is extracted from the Raman and elastic returns from the YAG laser. A relative density profile is constructed using the 355 nm returns above ~28 km, and the 387 nm return below. When the atmosphere is relatively clean - i.e., little or no volcanic aerosol present - this works well down to below 15 km. When there is a heavy loading of aerosol, however, this vibrational Raman technique breaks down and is not satisfactory for retrieving temperature at those altitudes.

Aerosol information is extracted from the ratio of the elastic return at 355 nm to the normalized Raman return at 387. This is, in essence, the lidar ratio; no assumption of the extinction to backscatter ratio is required as in single wavelength techniques.

Water vapor is retrieved from the ratio of the 387nm to 408 nm signals. Currently this data product can be retrieved from the ground to about 15 kms. However, recent new laser upgrades should extend this range to higher altitudes.

For a discussion of these techniques in more detail please see the references in the accompanying Reference - Techniques list.

Selected Measurement Campaigns

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Location</th>
<th>Campaign Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>October - November, 1988</td>
<td>Table Mountain, CA</td>
<td>Informal Comp.</td>
</tr>
<tr>
<td>July - August, 1989</td>
<td>Table Mountain, CA</td>
<td>STOIC</td>
</tr>
<tr>
<td>March - May, 1990</td>
<td>Cannon AFB, NM</td>
<td>Balloon Comp.</td>
</tr>
<tr>
<td>June - July, 1991</td>
<td>Table Mountain, CA</td>
<td>Engineering</td>
</tr>
<tr>
<td>March, 1992</td>
<td>Table Mountain, CA</td>
<td>UARS Validation</td>
</tr>
<tr>
<td>July - August, 1992</td>
<td>OHP, France</td>
<td>NDSC Comp.</td>
</tr>
<tr>
<td>October - December, 1992</td>
<td>Lauder, NZ</td>
<td>UARS Validation</td>
</tr>
<tr>
<td>March, 1994 - April, 1995</td>
<td>Lauder, NZ</td>
<td>ASHOE-MAESA/NDSC</td>
</tr>
<tr>
<td>August, 1995 - February, 1996</td>
<td>MLO, Hawaii</td>
<td>NDSC/TOTE/VOTE/STRAT</td>
</tr>
<tr>
<td>February - March, 1997</td>
<td>Table Mountain, CA</td>
<td>STRAIT</td>
</tr>
<tr>
<td>June - July, 1997</td>
<td>OHP, France</td>
<td>NDSC</td>
</tr>
<tr>
<td>February - March, 1998</td>
<td>Ny Alesund, Svalbard</td>
<td>NAOMI</td>
</tr>
<tr>
<td>Aug, 2002</td>
<td>Mauna Loa, HI</td>
<td>HOTI</td>
</tr>
<tr>
<td>May, 2003</td>
<td>Mauna Loa, HI</td>
<td>SWAVE</td>
</tr>
<tr>
<td>Oct 2005</td>
<td>HOH, Germany</td>
<td>HOPE</td>
</tr>
<tr>
<td>Mar-Apr 2005</td>
<td>Sodankyla, Finland</td>
<td>SAUNA-I</td>
</tr>
<tr>
<td>Feb, 2006</td>
<td>Sodankyla, Finland</td>
<td>SAUNA-II</td>
</tr>
<tr>
<td>Jun-Jul 2011</td>
<td>Lauder, NZ</td>
<td>TOPAL-II</td>
</tr>
<tr>
<td>Apr 2012</td>
<td>Lauder, NZ</td>
<td>TWOPAL</td>
</tr>
<tr>
<td>Nov, 2012 – Jan, 2014</td>
<td>Mauna Loa, HI</td>
<td>NOJGIE</td>
</tr>
</tbody>
</table>
May, 2015  Maido, Reunion Island  MORGANE
Apr, 2018  OHP, France  LAVANDE
Oct. 2018  HOH, Germany  HOPS
Sep. 2019  Cabauw, Netherlands  TROLIX

References - Technique


References - Campaigns and Results


