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1 Measured Quantities

1. Water Vapour mixing ratio
2. Temperature
3. Relative Humidity

4. Backscatter coefficient

2 Contact information

Name: Giovanni Martucci, Alexander Haefele (Head of upper-air measure-
ments, MeteoSwiss) Address: Chemin de I’AA(©rologie CH-1530 PAYERNE,
SWITZERLAND Phone: +41584609284 Email: Giovanni.Martucci@meteoswiss.ch

3 Instrument Description

Here, we provide a short overview of the fundamental operating principles of
RALMO; for a detailed description of the temperature and humidity transceiver
systems, the interested reader shall refer to the publications by Martucci et al.
(2021) and Dinoev et al. (2013), Brocard et al. (2013), respectively. RALMO’s
output beam is a 354.7nm pulsed laser emitted into the atmosphere at a rep-
etition rate of 30 Hz, the atmospheric-backscattered signal returning to the re-
ceiver is an envelope of five Raman signals and one elastic-backscattered signal.



The five Raman raw signals are the S0, , and S0, pure rotational Ra-
man (Q—branches around the Cabannes line at 354.7 nm), the Sy, o vibrational
Raman water vapour at 407.45nm, the Sy, vibrational Raman Nitrogen at
386.7nm, the So, vibrational Raman Oxygen at 375.4nm and the elastic sig-
nal Sg at the Cabannes line at 354.7nm. The polychromators are optical units
that separate the incoming envelope of wavelengths into the five Raman and the
elastic wavelength. They transmit them to dedicated PMTs and subsequently
to the two acquisition systems: the National Instrument for Jyign and Jioy and
Licel for the other signals. The data acquisition software has been developed to
ensure autonomous operation of RALMO, real-time data processing and rapid
(=~1h) T and ¢ product availability in the MeteoSwiss database.

The full list of publications about RALMO fitting NDACC interest at least par-
tially:Papanikolaou et al. (2024); Jayaweera et al. (2024); Farhani et al. (2023);
Chouza et al. (2022); Martucci et al. (2021); Brunamonti et al. (2021); Hicks-
Jalali et al. (2020); Leuenberger et al. (2020); Gamage et al. (2020); Hicks-Jalali
et al. (2019); Navas-Guzmén et al. (2019); Sica and Haefele (2016, 2015); Bro-
card et al. (2013); Dinoev et al. (2013)

4 Operational Algorithm

The used algorithm to process the raw data measured by RALMO is called Au-
tomatic Data Treatment (ADT), a MATLAB-based processing software for the
retrieval the measured quantities listed above. ADT releases (data processing
version number):

1. 1.0 1.1.2008-31.12.2013
2. 2.0 1.1.2014-15.8.2015
3. 3.0 16.8.2015-20.6.2018
4. 4.0 21.6.2018-16.10.2019
5. 5.0 17.10.2019-16.12.2021
6. 5.1 17.12.2021-13.03.2022
7. 5.2 14.03.2022-15.03.2023

8. 5.3 16.03.2023-

5 Water Vapour Mixing Ratio

At any time ¢, the RALMO (“ral”) profile of water vapour mixing ratio gy.1(t, 2),
retrieved from the solar background and dead-time corrected Raman signals
St,o0 and Sy, at the atmospheric level z, is proportional to the ratio R of the
water vapour signal to the nitrogen signal, R = Su,0/5N,, Eq. (1). Su,0 and



Sk, signals are stored into profiles with raw temporal resolution of 1min and
raw vertical resolution of 3.75m. The profile ¢,»1(7, £) is retrieved integrating
the 1-minute profiles over a 30-minute interval and averaging within the vertical
bin [z—15, z+15] m around each grid point z resulting in grid spacing of 30 m for
Z. The total altitude range spans the interval between the altitude of RALMO
(491 m amsl) and a user-defined upper-bound altitude zeng < 60 km. The value
of ¢ra1(T, Z) depends also on the ratio a of the differential Raman extinction
coefficients (one-way differential atmospheric transmission) at the wavelengths
of Sy,0 and Sn,. The Eq. (1) can be simplified neglecting the Raman differential
extinction as its contribution comes mainly from the aerosol extinction and is
less than 10% in the troposphere.
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The RALMO profile of water vapour mixing ratio ¢.1(7,2Z) is calibrated
automatically every morning (in cloudless conditions) using the signal coming
from the sun when it reaches an altitude of 19.80° elevation angleHicks-Jalali
et al. (2020).

6 Pure rotational temperature

As for the retrieval of the the temperature Tra), the Sy, and Sy, pure ro-
tational Raman signals have raw temporal resolution of 1 min and raw vertical
resolution of 2.4 m. The intensity of the rotational Raman lines Jyjgh and Jiow of
Ny and O2 molecules depends on the atmospheric temperature. Reversely, the
atmospheric temperature can be expressed as a function of the ratio of the two
rotational Raman signals @ = Sy, /S7,,,- The retrieval of the temperature
at the atmospheric level Z and time 7 depends on @ and on two calibration
coefficients, A and B.

A

Tral(T7 Z) ~ B + an(7—7 Z) (2)
A and B are determined by calibration of Ty, (T, Z) against the radiosonde ob-
servation Ty (7)€ | Z) every night in cloudless conditions at 7,\&h = 23 UTC.
Like for the water vapour mixing ratio, also for the temperature retrieval the
solar background represents a source of error. Therefore, the temperature is cal-
ibrated only during the night. The retrieved temperature profile is calibrated
automatically every night in clear-sky conditions using the colocated Payerne
radiosounding at 23 UTC.



7 Expected Precision/Accuracy of Instrument

Water Vapour ¢.1(7, Z): within 5 to 10% of radiosonde values up to 8km at
night, and within 3% up to 3km during the day. Temperature T;, (7, Z): 0.1K
bias and 0.5 K standard deviation in the first 10km at night, and 0.2 K bias
and 0.6 K in the first 5km at daytime.

8 Instrument History

2007: Installation.

2008: Start measurements of water vapour.

2011: Start temperature and aerosol measurements.

2015: Change of acquisition system for temperature S0, and S0, chan-
nels, from Licel to FastCom.

2018: Change of laser source, from Excel to Litron.

2023: Installation of National Instrument acquisition cards for PRR tempera-
ture channels. The NI cards replace the previous Fastcom acquisition cards.
2024: Installation of the depolarization channel (not operational, only test
mode).

2025: Expected start of operational mode of the the depolarization channel.
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