Metadata file for the Payerne NDACC station, September 2025

PI: Dr. Giovanni Martucci

September 2025

File Revision Date:September 2025

PI: Dr. Giovanni Martucci

Instrument: RAman Lidar for Meteorological Observations (RALMO)

Site(s): Payerne

1 Measured Quantities

- 1. Water Vapour mixing ratio
- 2. Temperature
- 3. Relative Humidity
- 4. Backscatter coefficient

2 Contact information

Name: Giovanni Martucci, Alexander Haefele (Head of upper-air measurements, MeteoSwiss) Address: Chemin de l'Aérologie CH-1530 PAYERNE, SWITZERLAND Phone: +41584609284 Email: Giovanni.Martucci@meteoswiss.ch

3 Instrument Description

Here, we provide a short overview of the fundamental operating principles of RALMO; for a detailed description of the temperature and humidity transceiver systems, the interested reader shall refer to the publications by Martucci et al. (2021) and Dinoev et al. (2013), Brocard et al. (2013), respectively. RALMO's output beam is a 354.7 nm pulsed laser emitted into the atmosphere at a repetition rate of 30 Hz, the atmospheric-backscattered signal returning to the receiver is an envelope of five Raman signals and one elastic-backscattered signal.

The five Raman raw signals are the $S0_{J_{\text{high}}}$ and $S0_{J_{\text{low}}}$ pure rotational Raman (Q-branches around the Cabannes line at 354.7 nm), the $S_{\text{H}_2\text{O}}$ vibrational Raman water vapour at 407.45 nm, the S_{N_2} vibrational Raman Nitrogen at 386.7 nm, the S_{O_2} vibrational Raman Oxygen at 375.4 nm and the elastic signal S_{el} at the Cabannes line at 354.7 nm. The polychromators are optical units that separate the incoming envelope of wavelengths into the five Raman and the elastic wavelength. They transmit them to dedicated PMTs and subsequently to the two acquisition systems: the National Instrument for J_{high} and J_{low} and Licel for the other signals. The data acquisition software has been developed to ensure autonomous operation of RALMO, real-time data processing and rapid ($\approx 1 \, \text{h}$) T and q product availability in the MeteoSwiss database.

The full list of publications about RALMO fitting NDACC interest at least partially:Masoom et al. (2025); Jayaweera et al. (2025); Crezee et al. (2025); Papanikolaou et al. (2024); Farhani et al. (2023); Chouza et al. (2022); Martucci et al. (2021); Brunamonti et al. (2021); Hicks-Jalali et al. (2020); Leuenberger et al. (2020); Gamage et al. (2020); Hicks-Jalali et al. (2019); Navas-Guzmán et al. (2019); Sica and Haefele (2016, 2015); Brocard et al. (2013); Dinoev et al. (2013)

4 Operational Algorithm

The used algorithm to process the raw data measured by RALMO is called Automatic Data Treatment (ADT), a MATLAB-based processing software for the retrieval the measured quantities listed above. ADT releases (data processing version number):

- 1. 1.0 1.1.2008-31.12.2013
- 2. 2.0 1.1.2014-15.8.2015
- 3. 3.0 16.8.2015-20.6.2018
- $4.\ \ 4.0\ \ 21.6.2018 \hbox{-} 16.10.2019$
- 5. 5.0 17.10.2019-16.12.2021
- $6. \ \ 5.1 \ \ 17.12.2021 13.03.2022$
- 7. 5.2 14.03.2022-15.03.2023
- 8. 5.3 16.03.2023-

5 Water Vapour Mixing Ratio

At any time t, the RALMO ("ral") profile of water vapour mixing ratio $q_{\rm ral}(t,z)$, retrieved from the solar background and dead-time corrected Raman signals $S_{\rm H_2O}$ and $S_{\rm N_2}$ at the atmospheric level z, is proportional to the ratio R of the

water vapour signal to the nitrogen signal, $R = S_{\rm H_2O}/S_{\rm N_2}$, Eq. (1). $S_{\rm H_2O}$ and $S_{\rm N_2}$ signals are stored into profiles with raw temporal resolution of 1 min and raw vertical resolution of 3.75 m. The profile $q_{\rm ral}(\mathcal{T},\mathcal{Z})$ is retrieved integrating the 1-minute profiles over a 30-minute interval and averaging within the vertical bin [z-15,z+15] m around each grid point z resulting in grid spacing of 30 m for \mathcal{Z} . The total altitude range spans the interval between the altitude of RALMO (491 m amsl) and a user-defined upper-bound altitude $z_{\rm end} < 60\,\mathrm{km}$. The value of $q_{\rm ral}(\mathcal{T},\mathcal{Z})$ depends also on the ratio α of the differential Raman extinction coefficients (one-way differential atmospheric transmission) at the wavelengths of $S_{\rm H_2O}$ and $S_{\rm N_2}$. The Eq. (1) can be simplified neglecting the Raman differential extinction as its contribution comes mainly from the aerosol extinction and is less than 10% in the troposphere.

$$q_{\rm ral}(\mathcal{T}, \mathcal{Z}) = C_0 \frac{S_{\rm H_2O}(\mathcal{T}, \mathcal{Z})}{S_{\rm N_2}(\mathcal{T}, \mathcal{Z})} \frac{\exp\left(-\int_{\mathcal{Z}_{min}}^{\mathcal{Z}_{max}} \alpha_{\rm N_2}(z') \, dz'\right)}{\exp\left(-\int_{\mathcal{Z}_{min}}^{\mathcal{Z}_{max}} \alpha_{\rm H_2O}(z') \, dz'\right)}$$

$$= C_0 R(\mathcal{T}, \mathcal{Z}) \frac{\exp\left(-\int_{\mathcal{Z}_{min}}^{\mathcal{Z}_{max}} \alpha_{\rm N_2}(z') \, dz'\right)}{\exp\left(-\int_{\mathcal{Z}_{min}}^{\mathcal{Z}_{max}} \alpha_{\rm H_2O}(z') \, dz'\right)}$$

$$\approx C_0 R(\mathcal{T}, \mathcal{Z})$$
(1)

The RALMO profile of water vapour mixing ratio $q_{\rm ral}(\mathcal{T}, \mathcal{Z})$ is calibrated automatically every morning (in cloudless conditions) using the signal coming from the sun when it reaches an altitude of 19.80° elevation angleHicks-Jalali et al. (2020).

6 Pure rotational temperature

As for the retrieval of the the temperature $T_{\rm ral}$, the $S_{J_{\rm high}}$ and $S_{J_{\rm low}}$ pure rotational Raman signals have raw temporal resolution of 1 min and raw vertical resolution of 2.4 m. The intensity of the rotational Raman lines $J_{\rm high}$ and $J_{\rm low}$ of N₂ and O₂ molecules depends on the atmospheric temperature. Reversely, the atmospheric temperature can be expressed as a function of the ratio of the two rotational Raman signals $Q = S_{J_{\rm low}}/S_{J_{\rm high}}$ (Behrendt, 2005). The retrieval of the temperature at the atmospheric level $\mathcal Z$ and time $\mathcal T$ depends on Q and on two calibration coefficients, A and B.

$$T_{\rm ral}(\mathcal{T}, \mathcal{Z}) \approx \frac{A}{B + \ln Q(\mathcal{T}, \mathcal{Z})}$$
 (2)

A and B are determined by external calibration of $T_{\rm ral}(\mathcal{T}, \mathcal{Z})$, i.e. against the radiosonde observation $T_{\rm rs}(\mathcal{T}_{\rm rs}^{\rm Night}, \mathcal{Z})$ every night in cloudless conditions at $\mathcal{T}_{\rm rs}^{\rm Night} = 23$ UTC. Like for the water vapour mixing ratio, also for the temperature retrieval the solar background can represent a source of error if overwhelming the Raman signal. Therefore, the temperature is calibrated only

during the night. The retrieved temperature profile is calibrated automatically every night in clear-sky conditions using the colocated Payerne radiosounding at 23 UTC.

6.1 Solar background calibration of PRR temperature

Alternatively to the traditional external calibration using the radiosonde, and ss described by Jayaweera et al. (2025), we use solar background measurements taken by the rotational Raman channels to calculate a relative calibration as a function of time. this calibration is made an absolute calibration and requires only a single external calibration (an ensemble of radiosonde flights). This approach is verified (and validated) using an external time series of coincident radiosonde measurements. We applied the calibration technique on the time series spanning 2011 to 2015 using both the radiosonde-based external and the solar-background-based internal methods. Our results show that using the background calibration technique reduces the mean bias of the calibration by an average of 0.5 K across the troposphere compared to using the local radiosoundings. Furthermore, it demonstrates the background calibration's ability to adjust and maintain continuous calibration values even in case of sudden changes in the system, which sporadic external calibration could miss.

7 Expected Precision/Accuracy of Instrument

Water Vapour $q_{\rm ral}(\mathcal{T}, \mathcal{Z})$: within 5 to 10% of radiosonde values up to 8 km at night, and within 3% up to 3 km during the day. Temperature $T_{\rm ral}(\mathcal{T}, \mathcal{Z})$: 0.1 K bias and 0.5 K standard deviation in the first 10 km at night, and 0.2 K bias and 0.6 K in the first 5 km at daytime.

8 Instrument History

2007: Installation.

2008: Start measurements of water vapour.

2011: Start temperature and aerosol measurements.

2015: Change of acquisition system for temperature $S0_{J_{\rm high}}$ and $S0_{J_{\rm low}}$ channels, from Licel to FastCom.

2018: Change of laser source, from Excel to Litron.

2023: Installation of National Instrument acquisition cards for PRR temperature channels. The NI cards replace the previous Fastcom acquisition cards.

2024: Installation of the depolarization channel (not operational, only test mode).

2025: Expected start of operational mode of the the depolarization channel.

References

- Behrendt, A.: Temperature measurements with lidar, in: Lidar, pp. 273–305, Springer, 2005.
- Brocard, E., Philipona, R., Haefele, A., Romanens, G., Mueller, A., Ruffieux, D., Simeonov, V., and Calpini, B.: Raman Lidar for Meteorological Observations, RALMO; Part 2: Validation of water vapor measurements, Atmospheric Measurement Techniques, 6, 1347–1358, https://doi.org/10.5194/amt-6-1347-2013, 2013.
- Brunamonti, S., Martucci, G., Romanens, G., Poltera, Y., Wienhold, F. G., Hervo, M., Haefele, A., and Navas-Guzmán, F.: Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements, Atmospheric Chemistry and Physics, 21, 2267–2285, https://doi.org/10.5194/acp-21-2267-2021, 2021.
- Chouza, F., Leblanc, T., Brewer, M., Wang, P., Martucci, G., Haefele, A., Vérèmes, H., Duflot, V., Payen, G., and Keckhut, P.: The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method, Atmospheric Measurement Techniques, 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022, 2022.
- Crezee, B., Martucci, G., Leuenberger, D., Merker, C., Haefele, A., and Arpagaus, M.: Assimilation of Raman lidar profiles in an operational, convective-scale numerical weather prediction model, Quarterly Journal of the Royal Meteorological Society, p. e5023, https://doi.org/https://doi.org/10.1002/qj.5023, 2025.
- Dinoev, T., Simeonov, V., Arshinov, Y., Bobrovnikov, S., Ristori, P., Calpini, B., Parlange, M., and van den Bergh, H.: Raman Lidar for Meteorological Observations, RALMO; Part 1: Instrument description, Atmospheric Measurement Techniques, 6, 1329–1346, https://doi.org/10.5194/amt-6-1329-2013, 2013.
- Farhani, G., Martucci, G., Roberts, T., Haefele, A., , and Sica, R. J.: A Bayesian neural network approach for tropospheric temperature retrievals from a lidar instrument, International Journal of Remote Sensing, 44, 1611–1627, https://doi.org/10.1080/01431161.2023.2187723, 2023.
- Gamage, S. M., Sica, R. J., Martucci, G., and Haefele, A.: A 1D Var Retrieval of Relative Humidity Using the ERA5 Dataset for the Assimilation of Raman Lidar Measurements, Journal of Atmospheric and Oceanic Technology, 37, 2051 2064, https://doi.org/10.1175/JTECH-D-19-0170.1, 2020.
- Hicks-Jalali, S., Sica, R. J., Haefele, A., and Martucci, G.: Calibration of a water vapour Raman lidar using GRUAN-certified radiosondes and a new trajectory method, Atmospheric Measurement Techniques, 12, 3699–3716, https://doi.org/10.5194/amt-12-3699-2019, 2019.

- Hicks-Jalali, S., Sica, R. J., Martucci, G., Maillard Barras, E., Voirin, J., and Haefele, A.: A Raman lidar tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland, Atmospheric Chemistry and Physics, 20, 9619–9640, https://doi.org/10.5194/acp-20-9619-2020, 2020.
- Jayaweera, V., Sica, R. J., Martucci, G., and Haefele, A.: Solar background radiation temperature calibration of a pure rotational Raman lidar, Atmospheric Measurement Techniques, 18, 1461–1469, https://doi.org/10.5194/amt-18-1461-2025, 2025.
- Leuenberger, D., Haefele, A., Omanovic, N., Fengler, M., Martucci, G., Calpini, B., Fuhrer, O., and Rossa, A.: Improving High-Impact Numerical Weather Prediction with Lidar and Drone Observations, Bulletin of the American Meteorological Society, 101, E1036 E1051, https://doi.org/10.1175/BAMS-D-19-0119.1, 2020.
- Martucci, G., Navas-Guzmán, F., Renaud, L., Romanens, G., Gamage, S. M., Hervo, M., Jeannet, P., and Haefele, A.: Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne, Atmospheric Measurement Techniques, 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021, 2021.
- Masoom, A., Kazadzis, S., Modini, R. L., Gysel-Beer, M., Gröbner, J., Coen, M. C., Navas-Guzman, F., Kouremeti, N., Brem, B. T., Nowak, N. K., Martucci, G., Hervo, M., and Erb, S.: Long range transport of Canadian Wildfire smoke to Europe in Fall 2023: aerosol properties and spectral features of smoke particles, EGUsphere, 2025, 1–43, https://doi.org/10.5194/egusphere-2025-2755, 2025.
- Navas-Guzmán, F., Martucci, G., Collaud Coen, M., Granados-Muñoz, M. J., Hervo, M., Sicard, M., and Haefele, A.: Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne, Atmospheric Chemistry and Physics, 19, 11651–11668, https://doi.org/10.5194/acp-19-11651-2019, 2019.
- Papanikolaou, C.-A., Papayannis, A., Gidarakou, M., Abdullaev, S. F., Ajtai, N., Baars, H., Balis, D., Bortoli, D., Bravo-Aranda, J. A., Collaud-Coen, M., de Rosa, B., Dionisi, D., Eleftheratos, K., Engelmann, R., Floutsi, A. A., Abril-Gago, J., Goloub, P., Giuliano, G., Gumà-Claramunt, P., Hofer, J., Hu, Q., Komppula, M., Marinou, E., Martucci, G., Mattis, I., Michailidis, K., Muñoz-Porcar, C., Mylonaki, M., Mytilinaios, M., Nicolae, D., Rodríguez-Gómez, A., Salgueiro, V., Shang, X., Stachlewska, I. S., Ştefănie, H. I., Szczepanik, D. M., Trickl, T., Vogelmann, H., and Voudouri, K. A.: Large-Scale Network-Based Observations of a Saharan Dust Event across the European Continent in Spring 2022, Remote Sensing, 16, https://doi.org/10.3390/rs16173350, 2024.

- Sica, R. J. and Haefele, A.: Retrieval of temperature from a multiple-channel Rayleigh-scatter lidar using an optimal estimation method, Appl. Opt., 54, 1872–1889, https://doi.org/10.1364/AO.54.001872, 2015.
- Sica, R. J. and Haefele, A.: Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method, Appl. Opt., 55, 763–777, https://doi.org/10.1364/AO.55.000763, 2016.