File Revision Date:

August 26, 2025

This file to be modified as re-analysis or new analysis results are available

NDACC METAFILE FOR JPL WATER VAPOR RAMAN LIDAR AT Table Mountain, Calif. (TMF)

- Applies to instrument and data history from 01-Jan-2003 to 11-Oct-2019
- PLEASE READ IMPORTANT 2019 UPDATE AT THE BOTTOM OF THIS FILE
- The above period covers analyzed and (re-)analyzed data sets available at this time
- Applies to TMF water vapor data processed with LidAna version v7.10 or later, and GLASS v1.0 or later
- Does NOT apply to TMF data processed with older program versions
- Does NOT apply to TMF stratospheric or tropospheric ozone data (see other meta data files for that)
- Applies to all HDF files cataloged on NDACC database with the following names: groundbased_lidar.h2o_nasa.jpl004_table.mountain.ca*.hdf
- Refer to "Reported Events" section for detailed report of unexpected problems
- This file to be modified as re-analysis or new analysis results are available

This is the first-ever NDACC archive of these profiles.

Use with extreme caution for trends.

- ***** See metafile "TMF_tropo3_ldr_jpl_2019.txt" for tropospheric ozone system and data *****
- ***** See metafile "TMF_aot_ldr_jpl_2019.txt" for stratospheric ozone system and data *****

Data Set Description:

PI: T. Leblanc Instrument: Lidar

Site(s): Table Mountain Observatory, CA, USA

Measurement Quantities: Ozone
Temperature

(Aerosol)

Contact Information:

Name: Thierry Leblanc (TL)
Address: Jet Propulsion Laboratory

Table Mountain Facility

P.O. Box 367, Wrightwood, CA 92397-367

Phone: W: (760) 249-1070 C: (818) 468-2708

FAX: (760) 249-5392

Email: thierry.leblanc@jpl.nasa.gov

Reference Articles:

Please refer to the file named "jpl_publications_2000.txt" for publications list prior to 2000.

Note: A 2019-updated list of publications will be posted here soon

Instrument Description:

- Water vapor Raman lidar, 3 pairs of Ramanchannels at 387/408 nm and later 3 additional Rayleigh and Raman channels for temperature and aerosol
- Water vapor profiles between 3-20 km
- Please refer to the publications list for more details

Description of Algorithms:

I - GLASS 1.xx (2009 - present)

Temperature/ozone/aerosol/water vapor lidar data analysis program GLASS v1.xx, by Thierry Leblanc (TL) first released in early 2017. This program overrides all previous analysis programs (LidAna, SO3ANL, see section I above)

New GLASS data processor does not require manual processing. Analysis is automated, using 100+ keywords tailored for a specific type of science application.

The results are quality-checked visually, manually, after analysis is completed.

This new automation capability allows for the re-analysis of a large number of measurements without user intervention.

- Data set from 2009 to present analyzed with versions 1.1x released in 2019.

An analysis overview is described below. Please refer to T. Leblanc for details.

- a) Raw signals are corrected for saturation, background noise, solid angle, Rayleigh extinction, NO2 and SO2 absorption if applicable.
- b) Water vapor profile calculation uses Raman technique. Ratio of 407.5 nm channel signals to 387 nm channel signals. Calibration performed 5 times per month by radiosoundings, Miloshevich-corrected RS92 until May 2014, and then RS41 since May 2014. Hybrid Lamp calibration technique ensures receiver calibration stability between radiosonde cal runs.
 - Signal is smoothed to reduce statistical noise by applying a smoothing filter, degrading vertical resolution with altitude.
- f) All results output in HDF-5 (native format), and HDF-4 (GEOMS template) following NDACC requirements
- g) In the HDF files, the measured quantities are provided together with Relative Humidity. This product is obtained using ancillary density-pressure profiles coming from NCEP or radio-sounding.

Expected Precision/Accuracy of Instrument:

- a) Water vapor overall precision is calculated and propagated throughout analysis and provided at 1-sigma in HDF files. The errors include the statistical error associated to photon counting, and systematic errors due to various corrections and to the calibration. The overall precision runs from 1% in the lower troposphere, to 20% at the top of the profiles (above 14 km). Calibration error is estimated to be 5-7%. Occasional contamination by fluorescence occur above 14 km.
- b) Unexpected but identified errors are reported in this metafile in the "Reported Events" section.

HDF File description:

This section provides details on the HDF files content:

- Self-explanatory
- All units are MKSA except pressure (in hPa), and mixing ratio (in ppmv).

Instrument History:		
- 2003	-	Start of program
- Oct 2006	-	MOHAVE-1 campaign
- Jul 2007	-	First system re-design to reduce fluorescence above 10 km
- Oct 2007	-	MOHAVE-2 campaign
- Jul 2009	-	Second system re-design to further remove fluorescence (fiber-free receiver)
- Oct 2009	-	MOHAVE-2009 campaign
		System design unchanged since then
- Sep 2012	-	Lightning strike causing massive failure of Licel system
- Mar 2013	-	Licel fixed, measurements resumed
- Oct 2018	-	New data acquisition program allowing remote automated operations
- Aug 2021	-	Filter wheel installed to separate actual Raman water vapor returns from
		fluorescence returns

****** CURRENT END OF LOG OF EVENTS, PENDING UPDATES ********

- Feb 2025 - Laser head failure. Two months data gap (March-April).