File Revision Date:
August 20, 2021

Data Set Description:
PI: Anne M. Thompson (after May 2021, PI: Ryan M. Stauffer)
Instrument: ECC Ozonesondes
Site: Natal, Brazil (Brazilian Space Agency - INPE, NASA Goddard Space Flight Center and Wallops Flight Facility)
Latitude: 5.8S
Longitude: 35.2W
Altitude: 42m amsl

Measurement Quantities: Ozone partial pressure, Ozone mixing ratio, Pressure, Temperature, Relative humidity, Geopotential height, GPS Altitude, Latitude and Longitude of payload, and Wind.

Data Version Description: SHADOZ V06 reprocessed/homogenized data.
Archived Data Record (SHADOZ V06) Start Date: August 23, 2000
Details of V06 reprocessing are in the references below.

Contact Information:
Name: Dr. Anne M. Thompson
Address: NASA Goddard Space Flight Center (GSFC)
8800 Greenbelt Road, Mail Code 614
Greenbelt, Maryland 20771 U.S.A.
Email: anne.m.thompson@nasa.gov

Name: Dr. Ryan M. Stauffer
Address: NASA Goddard Space Flight Center (GSFC)
8800 Greenbelt Road, Mail Code 614
Greenbelt, Maryland 20771 U.S.A.
Phone: 1 (301) 614-5552
Email: ryan.m.stauffer@nasa.gov

Site Contact:
Name: Dr. Francisco Raimundo da Silva
Address: Environmental Variables Laboratory
Instituto Nacional de Pesquisas Espaciais (INPE)
Brazilian National Institute of Space Research
Rua Carlos Serrano, 2073 - Lagoa Nova
Natal - RN - Brasil - CEP. 59.076-740
Phone: 55 84 3204 9121
FAX: 55 84 3204 9104
Email: francisco.raimundo@inpe.br
Data Contacts:
UAIRP Processing/QA:
Name: E. Thomas Northam
Address: NASA Wallops Flight Facility (Code 610.W)
34200 Fulton Street
Wallops Island, Virginia 23337 U.S.A.
Email: e.thomas.northam@nasa.gov

SHADOZ GSFC Processing:
Name: Dr. Debra E. Kollonige
Address: NASA Goddard Space Flight Center (Code 614)
8800 Greenbelt Road
Greenbelt, Maryland 20771 U.S.A.
Email: debra.e.kollonige@nasa.gov

DOI:
Not at this time.

Data License:
CC0

Reference Articles:

Instrument Description:
The ECC Ozonesonde (Electrochemical Concentration Cell Ozonesonde) is a lightweight, balloon-borne instrument mated to a meteorological radiosonde and flown to 30+ km while transmitting data back to a ground station. The heart of the ozonesonde is an electrochemical concentration cell (ECC) that senses ozone as it reacts with a dilute solution of potassium iodide to produce an electrical current proportional to the ozone concentration of the air.
Project start date: August 1979
Start analog data acquisition: August 10, 1979
Start digital data acquisition: July 24, 1996
Analog data record: August 10, 1979–October 23, 1992
Digital data record: July 24, 1996–present
Data gaps for archived data:
04/2020–10/2020 (COVID-19 shutdown); 04/2021
NOTE: a data gap is defined as a month or a sequence of months with
no reported ECC ozonesonde observations.

Ozone sensor:
Digital record:
 Science Pump Corporation (SPC) ECC-6A (07/1996–present; remaining record other than
 99 EN-SCI Z records)
 NOTE: EN-SCI ECCs were all Model Z for interface to the VIZ Manufacturing Mark II
 MICROSONDE with Ozone sensor radiosondes.

Radiosonde:
Digital record:
 Sippican, Inc. ZEEMET Mark IIA MICROSONDE 403 MHz dGPS with Ozone
 (12/2003–03/2007)
 Lockheed Martin Mark IIA MICROSONDE 403 MHZ DGPS (LOS) with Ozone Sensor
 (10/2006–08/2016)
 Lockheed Martin LMS6 Differential GPS (LOS) 403 MHz with Ozone sensor
 (08/2016–present)

Sensing Solution Type (SST):
 1% KI, 1.0x (full) buffer (Entire record w/ SPC)
 1% KI, 1.0x (full) buffer (99 records w/ EN-SCI, transfer function used to convert data to SPC
 1%, full buffer)

Launch Frequency:
Local launch times: nominal 1300-1500 UTC weekly (recent years); monthly or bimonthly at varying
release times (early records); COVID-19 shutdowns have resulted in monthly or less flights.

Algorithm Description:
Ozone is calculated as a partial pressure. PTU data from the sonde is not used directly in the calculation
except in the pump correction.
PPOZ(nb) = 0.004307 * i * Temperature * t *pcf

where:
the constant is half the ratio of ideal gas constant to Faraday's constant.
i is the current from the sensor - background in uA.
t is the time in seconds to pump 100 CCs of air through the pump.
Temperature is the pump temperature (K).
pcf is the pump correction factor to account for loss in pump efficiency at lower pressures.

Pre-flight procedures comply with:
"WMO/GAW Report 201"
https://library.wmo.int/doc_num.php?explnum_id=7167

All data have been reprocessed to comply with:
"O3S-DQA-Guidelines Homogenization-V2-19November2012.pdf"

Expected Precision/Accuracy of Instrument:
Ozonesonde:
Accuracy Precision Resolution
+/- 5% +/− 4% ~150m

Instrument History:
ECC Ozone sondes:
Manufacturer: Model # Time Period Used Design and Changes
Science Pump 6A 07/1996–present Pump temperature thermistor inside of pump block
EN-SCI Z 05/2000–07/2002 Circular molded plastic sensor cell

Solution Recipe changes:
1998-present -> 1% KI, 1.0x (full) buffer (Entire record w/ SPC)
2000-2002 -> 1% KI, 1.0x (full) buffer (99 records w/ EN-SCI, transfer function used to convert data to SPC 1%, full buffer)

Radiosonde changes:
2000 -> Sippican, Inc. ZEEMET Mark II MICROSONDE 403 MHz dGPS with Ozone sensor
12/2003 -> Sippican, Inc. ZEEMET Mark IIA MICROSONDE 403 MHz dGPS with Ozone sensor
10/2006 -> Lockheed Martin Mark IIA MICROSONDE 403 MHZ DGPS (LOS) with Ozone Sensor
08/2016 -> Lockheed Martin LMS6 Differential GPS (LOS) 403 MHz with Ozone sensor

Solution volume changes:
2000 -present -> 3.0 cm^3 used, no correction needed